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REPORT 1311

DETERMINATION OF VORTEX PATHS BY SERIES EXPANSION TECHNIQUE WTTH APPLICATION
TO CRUCIFORM WINGS

By ALBERTA Y. ALKsm1

SUMMARY

A sm”tx m.eihodof determiningtwo-dinwmimudvortex pathll
h consideredand applied to -thecomputation of von% posi%rw
behind a slender equdspan ctiform wing at any angle of
bank as a function of tlu distance behind the trailing edge.
Calculated paths me shown for four bank angles. For a
bank angle of ~“ comparbn is mude with tb 7w3wJIsof a
clo88d&prestion gimn in NACA TN 9606. For otlwr bank
angltx water-tank mperinwntx pr& @itatim comparison.
iSJu%jwtorgIagreementis found for a su#icieni dim!mcedoum-
stream to include most practical rnide+d positti.

The interference forces on an equal-span ire!.erdigitm%d
cnwijorm tail behind a sI& egwdspan cruciform wi~
are cahdated for jive angltx of bank (including the tm.via.?
case of zero bank) from the uorta positimw found ~ me of
the Seri-a

INTRODUCTION

It is now well established that the vortex wake at the
tail of a slender con.figuration similar to those used for
many missiles is often entirely rolled up and that the down-
wash field at the tail can be obtained by use of a single
discretevortex as an approximation to thevortxxwaketrailing
from each wing panel. If attention is confined to con&ura-
tions for which the ideas of conventional slender-body theory
can be used, the problem of determining the steady-state
vortm patlm becomes an react analog of the classical prob-
lem of the motion of a system of parallel rectilinear vortices.

Sacks, in reference 1, has invwtigated the case of an
equal-span cruciform wing at 45° angle of bank where the
symmetry of the problem permits the writing of a closed
analytic solution for the vortm paths. The direct extension
of his method to otb er angles of bank where no such sym-
metry mists does not appear feasible.

In the present paper, in order to avoid the requirement
of symmetry, n series has been ,developed to deii.nethe vor-
te.. paths. Paths computed by this method are compared
with the analytic results of Sacks for 45° angle of bank, and
with tbe results of water-tank experiments for three other
bank angles. Calculations are made of the forces on a tail
due to vortices in the computed positions.

ISnWmedeaNACATN 2870by Alb?rtaY. Alkm&19W
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ANALYSIS

AxLsSYSTEM

The coordinate system used in this report is a wind-axis
system as shown in figure 1, where the origin lies at the
trailing edge of the wing c’mter line. The angle of attack
is required by the limitation of the theory to be small and
the trailing edges of the wing panels are assumed to lie in
the z=O plane.

FIGURE1.—M system.

SRRIE9SOLUTIONPOE VORTEXMOTIONS

Analytical solutions for the motion of a system of parallel
rectilinear vortices are given by Grtibli in reference 2 for the
case of three vortices with certain restrictions on the starting
positions and strengths, for four vortices with a plane of
-em, ~d for 2n vortices with n plains of symmetry.
The solution for four vortices as .#ven by Grtibli contains an
error 2 but is given correctly by Sacks in reference 1 and is
there applied to the case of the vortices behind a slender
equal-pan cruciform wing at 45° angle of bank, that is, to
four vortices of equal strength starting in the form of a

~Page147ofrefererweZ ewatlom23and24.
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square. The solution in this case depends on the mistence
of a plane of symmetry and cannot readily be ixtended to
cases of arbitrary vortex strength where the symmetry is
lacking.

The present analysis undertak~ to deilne the positions of

a number of vortices of given strengths and initial positions
in terms of a Taylor’s series in powers of the time, t,thereby
eliminating the dependence on symmetry. Exqxmsion
around t=O rm.dts in the following expression for the
position of the ith vortex:

The coefficients of this series can be determined by using
the Biot-Savart law for two-dimensional vortices parallel to
the z axis. For a s$tem of free vortices, if Vtand Wi are
the y and z components of the velocity of the W vortex due
to a vortex of strength r, situated at v,, z,, the required
vortex laws are:

–r, Z,(t) –Zj(t)
vi(t)=: yi(t)=~~ #

rf V,(t)–Yj(t)
Wi(t)=g zi(t)=~~ #

}

(2)

where P=~@--yj(t)]’+ [Z,(t)–z,(t)]’

Now if the positions of all the vortic~ are lmow-nat t=O,
it is possible to write the coefilcient of the fit power of t
in equation (1) for all the vortices concerned by simply
substituting the initial positions into equation (2) to get

(*)t.Omd(~)t-O’
Thus the tit two te&s of the series

me bow-n for all the vortices, that is, Vi and Zf can now be
written as linear functions oft. Substituting these first two
terms into equation (2) and differentiating m-th respect to t
and then setting t equal to zero gives the coefficient of the
second power of t. Now three terms of the series are avail-
able for substitution into equation (2), etc: Note that at
each step the unknown terms of the series are of no signifi-
cance”in the process since they still contain t as a factor after
the differentiation and therefore disappear when t is set to
zero.

The following formula for differentiation of a product of
two functions is convenient for use in obtaining higher order
term9:

n>l

O<k<n

In the present case, ti~(t)=-$ then g(t) represents (q–z,)

Now it can be seen that if the positions can actually be
described by such 8 series, the only restriction on problems

(1)

to be solved is that the seriesshould converge rapidly enough
to bo”practical for the desired values of t and that the work
of evaluating the coefficients should not be prohibitive.

As a test of the method the coefficients have been deter-
mined out to the fourth power of t for the case which corre-
sponds to the equal-sprm cruciform wing at my angle of
bank, that is for four vortices initially placed at the cornms
of a square with diagonally opposite vortices of eqtmlstrength
but opposite sense. Furthermore, since there was a closed
analytic solution available for this configuration at an onglo
of bank of 45°, “five additional coefficients wore founcl for
that case with a view to incmaaed understanding of the
behavior of the series.

INITIALPOSITIONSANDSTRZNQTHSOF VORTIOSS

In accordance with the work of Spreiter and Sacks (ref. 3)
all of the vorticity behind a wing has been assumed to be
concentrateed in vortex lines springing from the ccntroid-of-
~orticity’positions at the txailing edge and subject thorenftcr
to the two-dimensional vortm laws. Since the circnlotion,
r, is equal to the jump in potential, Aq, and since slender-
body theory leads to an elliptic spanwiee distribution of AqY,
the centroid of vorticity at the trailing edge of each wing
panel lies at a point 7r/4of the distance from the center line
to the wing tip. Thus, each vortm pair has a span of 2a,
where a= (7r/4)s. as shown in figure 2.

z

Y

FIc+mm2.—&umed vortex positionsat wing trailingedge,
,,,



D~ATION OF VORTEXPATHS

The lift of the equal-span cruciform wing, La, that is, the
force in the direction of the positive z axis, does not vary with
angle of bank but remains throughout:

L.= PmUmrw(2a) (4)

where I’Wis the circulation around the horizontal wing at
angle of bank += O. At other anglea of bank the vortex
strengths are related to I’w as follows:

rf=—r9=r. ~9@

}
(5)

rl=—r~=r. SiIIo

BY SER133SD~ANSION ‘1’EHQUE 697

where the vortices are numbered as in figure 2.

SOLUTIONS

The use of equations (l), (2), (3), and (5), together with
the fact that the initial potitiona of the vortices are known
in terms of the wing semispan, sW,and the bank angle, +,
leads to a series for the vortex positions at any time t.
Coefficientshave been found out to the fourth power of t,
and with the substitution

T.-#$

the series can bo written as follows:

4fl~
~-=sin 4— (sin 4 cos ~) T—: (sin 41COS3+) P+; (sin @ COS2d) (sin* @—cos2#) T’ . . .

::=COS +— (l+COS*+)T— (COSt@T2—~ COS21#1(1+2COS2@~-; COS4(3—: Si1121$COS2@)T4 . . .

+)P+; (sin*@ cos d) (sin’@–cos’4) T’ . . .

4(1+2 sin’ 4)T3+ sin 4(3—4 sin2$ cod ~)T4 . . .

>

For +=0, which corresponds to the case of a plane wing,
vortices 1 and 3 are nonexistent since 1’1= —ra= O by
equation (6). This leaves only the vortex pair, 2 and 4, for
which the strengths and positions are given correctly by
equations (5) and (7).

For the special case treated by Sacks, that is, the equal-
sprm cruciform wing at an angle of bank O= ~/4, there is a
plane of symmetry and the series is simplified so that the
Imborof evaluating the coefficients is a great deal less than
for the general case. For this case cmficients were found

out to the ninth power of t. Since Si.11+=COSc$=l/&’, and

rl= —r3=r4= —r2=Em*
the series can be written, letting

T= T/fi

(6)

(7)

- (8)
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As pointed out previously, the vortex laws used here apply
to straight-line vortices, parallel to the z axis, extending to
iniinity in both directions, and changing their position with
time. Their use in the situation to which they are to be
applied depends on the three-dimensional steady-state
vortex picture showing relatively gradual variations in the
z direction. Within the limits of slender-body theory the
correspondence is exact, and the results obtained in the
previous section can be used to compute the threedimen-
sional vortex paths behind a slender equal-span cruciform
wing by means of the relation

z= Umt (9)
Now since

+::, (6)

and
L.=p. uJ’&kz) (4)

and in slender-wing theory

CL= (r/2)Aa (lo)

the positions of the vortic-es at any downstream station,
z/sw, can be found from equation (7), or for 45° bank from
equation (8), by use of the relation

(11)

where % is the ‘[attitude angle,” that is, the angle between
the center line of the cruciform wing apd the fiee4remn
direction.

If Aw=~ as for trianguk wings, then equation (11) can

be written:

(12)

Equation (12) provides the relation used in the present
report.

EXPEIl~NT

In order to provide a qualitative means of judging the
results of the computations for angles of bank for which no
closed rwdytic solution is awdable, experiments were run
with small models in a water tank. VVatermiscible paint
spread on the trailing edge before each run remained floating
on the surface of the water behind the model and made the
vortices visible. For various reasons, it was considered
inadvisable to attempt quantitative comparison. For one
thing, there is no general agreement as to the point in a
vortex swid which is to be considered the center of the core,
and the centroid of vorticity, which is the quantity calcu-
lated in this report, is even more diilicult to deiine. For
another thing, the best pictures were obtained at angles of
attack which were too high to be entirely compatible with
the assumptions of the theory. However, the water-tank
experiments were expected to demonstrate the trends in the
variation of the vortex patterns with bank angle.

WATERTANKANDMODEIS

The water tank used in the present experiments was the
same as that described by Sacks (ref. 1) and is shown in
figure 3. Three difhrent models were used, all equal-span
cruciform wings constructed of sheet metal 0.050 inch thick.
One model had an 8-inch span and an aspect rotio of 2.
The others were smaller, having only a 4-inch span. One
of these had an aspect ratio of 1, the other, 2, Various

FIGURE3.—lVater tQL&withcruciform model,

angles of attack were tried. The most successful runs wero

made at E= fi=15°. As in reference 1, motion pictures

provided a record of the distance traveled by the wing as
well as of the changing vortex patterns.

The water tank was not deep enough for the 8-inch-span
model to continue running much beyond two span lengths
below the surface. However, the camera was kept running
after the model stopped and the time, measured in franms,
was used to determine an equivalent distance.

ACCURACYANDREPEATABILITYOF EXPERIMENTALDATA

It was found that runs made with the two small modols
showed excessive influence of currents set up in the tank
by the supporting mechanism and by various outside dis-
turbance. The vortex paths behind the model with 8-inch
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span showed little effect of stray disturbances but, since
the water-tank diameter was only 22 inches, there was a
lurge systematic error due to wall interference.

A comparison was made of the vortex patterns at corre-
sponding distances behind the three diflkrent models for
I#I=r/4. The choosing of the particular runs in which the
symmetrical vortex pattern typical of this symmetrical con-
figuration was maintained eliminated most of the irrelewmt
disturbances which made data from the small models gen-
erally unsatisfactory. hleazured in terms of the half span of
the model, the y coordinntea of the vortex cores at corre-
sponding distancea behind the three models did not differ by
more than 10 percent. However, the z cooidinatw behind
the large model differed from those behind the small modeLs
by about 26 percent.

A wall-interference correction consisting of a constant up-
wash, computed on the assumption of four discrete vortices
(see Appendix B) was su.ilicientto bring the results for the
large model into very good agreement with those for the
small models. Since this was the case for the bank angle of
45° where the general nature of the vortex pattern was
known, and since the upwash at t=O was found, under the
same assumption, not to vary with bank angle, it was as-
sumed that the data obtained from the large model for other
angles would also be satisfactory when the same correction
was applied. The water-tank pictures shown in this report
are those taken with the large-span model and the necessmy
corrections are indicated by additional reference points
marked at the sides of the prints.

No allowance was made for the effects of stopping the
model before the runs were complete. The infiuence, if any,
should have appeared as an additional dowmvash at the
surface near the end of a run, but none was noted in com-
paring runs made with the large and small models.

RESULTSAND DISCUSSION

Computations of vortex paths behind a cruciform wing
have been made using equations (7) and (8) for four angles of
bank, #=m/16, m/8, 3r/16, 7/4. Figure 4 shows the paths
with y/8mplotted against z/& for various values of z/& in a
coordinate system in which the x axis lies in the stream direc-
tion and the bank angle is measured from the z axis and is
positive when the starboard wing is rotated down. The
points shown me for T=O, 0.276, 0.352, 0.449, 0.517, 0.582,
0.660, and 0.766, which for an aspect-ratio-2 wing with a
lift coefficient of 0.82 (Z=7/12), corresponds to x/&w=O,4.1,
5.2, 6.6, 7.6, 8.6, 9.6, and 11.4; that is, this figure may be
considered either as a time history or as a representation of
three-dimensional vortex paths.

Computations have been carried out to a v&e of T corre-
sponding to the ‘leapfrog” position of reference 1, that is, to
the value at which the two upper vortices pass between the
two lower vortiws for a bank angle of 45°.

Figure 5 shows water-tank pictures taken with the 8-inch-
spun model at an attitude angle of 7/12 radians and at bank
angles of m/16, 7r/8, and 3~/16. Choice of the appropriate
frames from the motion picture iilrn made it possible to pre-
sent pictures corresponding very closely to most of the values
of T used in the computations. IVo comparison is shown for
smrdl values of T where the vortices were in the process of

BY SERJESDXPANSIONTECSNIQUE 699

rolling up and the tilble vortex cores were not only poorly
defined but did not yet correspond to the centroids of vor-
ticity. As can be seen horn the fit picture of each series,
the solid white markers indicate the point at which the
trailing-edge center line entered the water. The open white
markers indicate the corrected position of this reference
point, shifted upward to account for the upwash due to the
presence of the tank wall. (See Appendix B.) It can be
seen that the variation with angle of bank found by the
calculations (fig. 4) is similar to that shown in figure 5.

In figure 4(d) the positiona as calculated by the formulas
of reference 1 are shown for comparison with the series re-
sults at a bank angle of ~/4. For this bank angle the ninth-
order terms of the series were available horn equation (8).
I?oints are also shown computed with terms out to the fourth
order as for the other anglea of bank. Even at the “leap-
frog” position (last point computed) the agreement is good
if ninth-order terms areused. II only terms out to the fourth
order are used, the largest error appears in the z coordinate
of the fast moving vortices 1 and 2, but at a point which, for
Z= 12, would correspond to a distance domtream of four
times the wing span, the error is still 1sssthan 10 percent of
the total change of position in the z direction, or about 6
percent of the wing span.

From this comparison with the work of Sacks, together
with the fact that the water-tank pictures for other angles
of bank also show qualitative agreement with the computed
vortex positions, it appears that the series computations give
satisfactory results for a distance of several wing spans
beh_indthe trailing edge.

& a further check on the dependability of the seriesmethod
the results for @=~/4 using successive terms of equation (8),
are presented in figures 6 and 7, again in comparison with the
results calculated from the formulas of Sacks. In these
figures the vahma of y/& and z/sin are plotted separately
against the parameter T, which is related to the downstream
distance as in equation (12), so that

z0~J6
T=—

8~.#

It can be seen horn these ilgu.resthat the series appears to
converge quite rapidly for small values of T, and to converge,
although more slowly, even for the highest value of T used.
Figure 8 shows the sum of the fit n terms plotted against n,
out to n= 9, for T=o.617 for all four vortices. (The fit
term, n= O, is not shown as it is simply the initial position.)
It can be seen that the series for y/8u converge very quickly.
Note also that only the odd powers of T appear in the series
for y/8m. The series for ZJ8Wand z3/8walternates and that
for zl/8w and ZJt?=does not; however, both approach the
correct value very rapidly at T= O.517.

Figurea 9 and 10 show y/8n and z/sWplotted against T for
each of the four vortices for a bank angle of z/8. Only
fourth-order terms are available for this &e, but it can be
seen that the behavior of the series is very similar to that
observed for d= r/4. Figure 11 shows the sum of the tit
n terms-for 4= T/8 plotted against n out to n=4 for each
vortex for T= 0.517, further substantiating the statement
concerning similar behavior, although the convergence is
slower.
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Xb-v,so
(0)

x/sw=4J J/swz 5.2 .i7Sw= 6.6

I
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.@#8.6 xL+9.6 xi+= I L4 I

x&%4.1

(a) +=z/16
(b) +=r8

(0) I#=3r/16

FIGURE5.—Photographa of wake at varioue atationa behinda cruciform wingof aspeot ratio 2, for three different bank angles; Z= x/12.
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It appears from these considerations that for small values
of T only two or three terms of the series are required and
that the inclusion of fourth power terms is enough to givo
good results out to about T= 0.5. Beyond that point the
resultsbecome somewhat doubtful if only terms out to tho
fourth power of Tare used, but provide a fairly wide range of
useful values, as can be seen from the fact that for a lift
inefficient of 0.5 and an aspect ratio of 2, T=o.6 corresponds
to about six span lengths behind the trailing edge of the wing.

CAL~ATION OF LIFT ON A CRU~ORM TAIL

The lift on the tail of a slender wing-tail combination due
ko the vortices from the wing can be computed by reverse
Howtechniques as discussed in reference 3, on the assumption
that the tail does not influence the positions of the vortices.
The equation

fiJ~Jm-(li$-’$)]} (13)

given in reference 4 yields the normal force on a comporient
tail, or tail plane (see fig. 12), due to a single vortex. Note
that a factor has been placed in front of the outer radical to
take account of the case of b<O. The effects of all the
vortices must be summed for each component tail and the
components of force in the z direction added to give the lift.

The configuration chosen for the present calculations was
mncifnrm t il int-rrli -it t -1h-hind mmcifnrm winrr ns in
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figure 13, where the tail components are designated V and
H as shown. Note that the tail center line is an extension
of the wing center line, whereas the z axis lies in the stream
direction. Since no account was taken of the effect of the
tail on the vortex paths, the vortex positions used in the
force calculations were those already computed in the
mbsence of a tail for the station corresponding to the tail
trailing edge.

The normal-force coefficients on each tail plane have been
computed from equation (13) for five angles of bank for
three ratios of tail span to wing span, and for T= O.247and
T= O.411. lt should be noticed that varying T corresponds
to varying~either the tail length, the wing lift coefficient, or
the nspect ratio (see eq. (12)). 1?or c~=O.5 and ~=2 these
vnlues of T corrwpond to z/s~= 6 and x/sa= 10. The results
nre:shown in figure 14.
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FIGURE 10.—Variation with the parameter T of vertioal position
z/s. far each of the four vortices behind a cruciform wing, ouhmlated
using successive terms of equation (7); ~= T/8.
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In figure 15 is shown the lift coficient of the tail due to
the presence of the vortices, that is, the interference lift
coefficient, CLI, measured in the positive z direction (the
same direction as the lift on the wing). It is interesting to
note that for T=oz7 and sJsm=1, and also for T=O.411
and sJ&= 1.2, there is very little variation of interference
lift coefficient with angle of bank.

A comparison with analytical results obtained by the
method of reference 5 for 45° angle of bank is shown in
figure 16, in which the interference lift is plotted against the
tail-span to wing-span ratio. The agreement is very good,

+
Cornpmt toll h’

(a) T= O.247

FIGURE12.—Pasition of wing vortex relative to a oomponent tail, or
‘tailplane.

z

x

FIGURE 13.—Cruciform W fnterdigitated behind a cruoiform WJng
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FIGUEII 14.—Variation of interference normal-force coefficient CN=with bank angle .$ for an intmdigitated
the downatrearn distance parameter T behfnd a oruoiform wing.

cruoiform tall at two values of



DETERMINATION OF VORTEX PATHS

o

-.2 ~
(I

1 ElJ
CL1

-.4

s, /sw

e .75

Q I.co
0“ 1.20

-.6

0

{)
\* ()

1 ) 1

-.24> \ <>

CL1 \

(b)

-,4 ~
u/16 ir/8 3u/16 v/4

+

(a) T= O.247
(b) 5!’=o.411

Fmwm 15.—Variation with bank angle # of the interference lift
coefficient CL1on an interdigitated cruciform tail at two valueE of

the downstream cfbtance parameter T behind a cruciform wing.
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Fmmm 16.—Variation with the ratio of tail span to wing span of the
interference lift coefficient on an interdititatcd oruoiform tail behind
a oruciform wing at angle of bank, ‘+= T/4;
ZJ8”=6.

as of course should be expected since the
agree so well.

CONCLUDINGREMARKS

Computations of vortex paths and of

cLm=0.5; Aw=2;

vortex positions

forces on a tail
behind a slender equal-span cruciform wing have been made
using a series to determine the vortex positions as a function
of the distance downstream. The results show that, for a
bank angle of 45°, only a few terms of the series are needed
to provide satisfactory agreement with the known analytic
solution. at -downstream distances encompassing most prac-
tical missile tail positions. Comparison with water-tank
picturca of the vortex patterns for other angles of bank, and
consideration of the relative size of successive ‘terms of the
series, indicate that the same number of tm will %e
sufficient ‘also for the general case where no analytic solution
is known.

Aams bRONA~CAL LARORATORY
NATIONALADVISORYCo marmm FOR&RONAUTICS

MommTT FIELD, CALIF., Feb. 8, 1966

.

,

.



. ... ..- —-—— —.. ..—— .

A

a

b

o

c.

c!,

CN1

H

h

L
L.

L1

NI

n

R

r
s

APPENDIX A

PllD?CIPALSYMSOLS

(28)’aspect ratio, —
s

one half the distance, at -&=O,between the two
vortices associated with a component wing 1

distance of a vortex from the plane of symmetry
of a component tail 1

maximum chord

(The reference are~ used in this report is the
area of one component wing.)

interference lift coefficient (approximatee)
interference normal-force coefficient

tail surface that is horizontal at .@=~ for inter-

digitated tail
perpendicular distance from a vortex to the

plane of a component tail
lift, force in the z direction
force in the z direction on a- cruciform wing

(invariant with bank angle)
projection of the interfmence normal force on

the X,Zplane (approximately the interference
lift)

interference normal force, that is, normal force
on a component tail due to the presence of

vortice9
positive integer
radius of a cylindrical boundary; speci.iically,the

radius of the water tank

d(yi-?h)’+( a-%)’
arm

(The reference area used in this report is the
area of one component wing.)

8

T

t
u.

v

V)w

w
X>y, z

a

z

r
r.

:
Pm

T

:

t

w

semispan at trailing edge (maximum semiapm)

parameter used in series,~

time, related to x by x= UJ
free-stream velocity

tail surface that is vertical at

dititated tail

*Z for intw-

velo~ity components in y and z directions dud
to two-dimensional vortices

complex velocity, v—iw
Carteaiau coordinate, origin at center of wing

trailing edge, x axis in the stream direotion
(See fig. 1.)

angle of attack, radians
attitude angle of cruciform wing, that is, the

angle between the free stream and the centar
line, radiams

circulation, positive counterclockwise
reference vortex strength, invariant with bank

L.
angle,

p.u&a)

complex coordinate, y+iz
y—iz
mass density of air at free-stream conditions

parameter used in series,~
Z’

perturbation velocity potential
wing angle of bank positive clockwise

Sussclmvrs

tail
wing

1By “componmtmlr&’(or“compmenttall”)fsmmnta wlw (w tall)cw@sthKaftwo ‘@mJs” lyinginthesame@me.
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APPENDIX B

WALL-INTERFERENCECORRECTIONS J

As in the case of tunnel-wall corrections, the effect of sur-
rounding a group of vortices with a solid cylindrical boundary
of radius 1? can be calculated by the method of images when
the vortex positions and strengths are known.

I?or each vortex within the boundary, the position is given
as fj where t=y+iz and i== The position of the
image outside the boundary is then known and is Rxflt
where ?=y—iz. Then at a point ~ the complex veloci~ due
to the image vortex is

w=v-iul=~ ‘r’
W[%-’”(’-H=%+%+ “)

If the field of interest is confined to a small area in the center
of the cylinder and if the vortices also remain in this area,
t maybe neglected as very small compared to l?’fl, and the
complex velocity due to a number of image vortices may be
written

@2)

Then

Since the present report is concerned with an equal-span

cruciform wing, there are assumed to be only four vortiwa

within the boundary and the relation between their strengths
is

rl=—r3=rw Si.U4

}
(5)

r,= —rz= r. cos 4

Then at the center of the cylinder

W=* [(yl–1/3) sin 4+(?44-?/2) ~s 41

}

w)
–-” [(2,–+3) sin #+(z,–Z,) Cos @]

‘—2irR2

where W, m, YS, YL md ZI, zi, %, and 24 depend on t.. At t= O
the positions of the vortices are known in terms of @and the
semispan, sW,and the expressions for w and u simplify to

(135)

w=r~.
@

V=o‘1
for any angle of bank.

For the special case of 45° bank angle, sin I#I=cos $=
i

and symmetry provides relations between the vortex po&
tions so that

(136)

U=o J
at any time t. Furthermore it is lmown (see refs. 1 and 2)
that for this case &+y4) is constant with time so at the
center of the cylinder

W=constmt; 0=0 (B7)

as long as symmetry with respect to the z mis is maintained.
Since, near the center of the cylinder, the upwash for all

angles of bank is the same at -t=O and the upwash for +=7r/4
does not change with time, it has been assumed that one
correction, namely,

could be used throughout. This resulted in a correction of

‘Ad to the z position at any time, t, where 1? is the radius
4R2
of the water tank.
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